Metamorphic and Speed Effects on Hindlimb Kinematics during Terrestrial Locomotion in the Salamander Dicamptodon Tenebrosus
نویسنده
چکیده
The kinematics of the hindlimb during terrestrial treadmill locomotion in Dicamptodon tenebrosus were compared between larval and metamorphosed individuals at different speeds. Coordinates of marker points on the salamander's midline, pelvic girdle and left hindlimb were digitized from high-speed videos (200 fields s-1). These yielded kinematic variables describing trunk flexion, pelvic girdle rotation, femoral protraction/retraction and knee flexion/extension. A three-way analysis of variance tested for mean differences among individuals, speeds and metamorphic stages for each variable. No significant overall effects of metamorphosis were found, although several variables showed significant stage x individual effects. Multivariate analyses revealed that the variance in kinematics of the larvae was significantly greater than that of the metamorphosed salamanders. Several variables showed significant speed effects or strong trends, among them stride length (increases with speed), cycle duration (decreases), contact interval (decreases) and phase variables describing the relative timing between minimum/maximum angles and the beginning of stance/swing phase. Such changes with speed are consistent with those shown for diverse arthropods and tetrapods and suggest that changes in stride length and timing events during a stride represent a general mechanism for effecting an increase in locomotor speed.
منابع مشابه
Hindlimb Kinematics during Terrestrial Locomotion in a Salamander (dicamptodon Tenebrosus)
A quantitative study of hindlimb kinematics during terrestrial locomotion in a non-specialized salamander was undertaken to allow comparisons with limb movements in other groups of tetrapods. Five Dicamptodon tenebrosus were videotaped at 200 fields s-1 walking on a treadmill. Coordinates of marker points on the salamander's midline, pelvic girdle and left hindlimb were digitized through at lea...
متن کاملPolymorphic tetranucleotide microsatellites for Cope's giant salamander (Dicamptodon copei) and Pacific giant salamander (Dicamptodon tenebrosus).
We present primers and amplification conditions for 15 microsatellite loci developed for the Cope's giant salamander (Dicamptodon copei), 14 of which are tetranucleotide repeats. Cross-species amplification revealed 10 of these loci to also be polymorphic in the Pacific giant salamander (Dicamptodon tenebrosus). Several loci produced nonoverlapping allelic ranges between the two species and may...
متن کاملMotor patterns and kinematics during backward walking in the pacific giant salamander: evidence for novel motor output.
Kinematic and motor patterns during forward and backward walking in the salamander Dicamptodon tenebrosus were compared to determine whether the differences seen in mammals also apply to a lower vertebrate with sprawling posture and to measure the flexibility of motor output by tetrapod central pattern generators. During treadmill locomotion, electromyograms (EMGs) were recorded from hindlimb m...
متن کاملInfluence of life-history variation on the genetic structure of two sympatric salamander taxa.
Life-history characteristics are an important determinant of a species' dispersal abilities. We predict that variation in life history can influence population-level genetic patterns. To test this prediction, we estimate population-level genetic structure for two sympatric species of stream-breeding salamander. The Cope's giant salamander (Dicamptodon copei) rarely metamorphoses into a terrestr...
متن کاملTwisting and bending: the functional role of salamander lateral hypaxial musculature during locomotion.
The function of the lateral hypaxial muscles during locomotion in tetrapods is controversial. Currently, there are two hypotheses of lateral hypaxial muscle function. The first, supported by electromyographic (EMG) data from a lizard (Iguana iguana) and a salamander (Dicamptodon ensatus), suggests that hypaxial muscles function to bend the body during swimming and to resist long-axis torsion du...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 193 1 شماره
صفحات -
تاریخ انتشار 1994